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ON-LINE NONLINEAR PROGRAMMING AS A GENERALIZED
EQUATION
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Abstract. We establish results for the problem of tracking a time-dependent manifold arising in on-
line nonlinear programming by casting this as a generalized equation. We demonstrate that if points along
a solution manifold are consistently strongly regular, it is possible to track the manifold approximately by
solving a single linear complementarity problem (LCP) at each time step. We derive sufficient conditions
guaranteeing that the tracking error remains bounded to second order with the size of the time step, even if
the LCP is solved only to first-order accuracy. We use these results to derive a fast, augmented Lagrangean
tracking algorithm and demonstrate the developments through a numerical case study.
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1. Introduction. Advanced on-line optimization, control, and estimation strategies rely
on repetitive solutions of nonlinear programming (NLP) problems. The structure of the NLP
is normally fixed, but it depends on time-dependent data obtained at predefined sampling
times (e.g. sensor measurements and model states).

Traditional on-line NLP strategies try to extend the sampling time (time step) as much
as possible in order to accommodate the solution of the NLP to a fixed degree of accuracy.
A problem with this approach is that it neglects the fact that the NLP solver is implicitly
tracking a time-dependent solution manifold. For instance, insisting on obtaining a high
degree of accuracy can translate into long sampling times and increasing distances between
subsequent problems. In turn, the number of iterations required by the NLP solver increases.
This inconsistency limits the application scope of on-line NLP to systems with slow dynamics.

Approximate on-line NLP strategies, on the other hand, try to minimize the time step by
computing a cheap approximate solution within a fixed computational time. Since shortening
the time step reduces the distance between neighboring problems, this approach also tends to
reduce the tracking error. These strategies are particularly attractive for systems with fast
dynamics. However, an important issue is to ensure that the tracking error will remain stable.

Approximate strategies such as real-time iterations and continuation schemes have been
studied previously in the context of receding-horizon control and estimation. These strategies
solve a single Newton-type step at each sampling time. In the real-time iteration strategy
reported in [7], the model is used to predict the data (e.g., states) at the next step, and
a perturbed quadratic programming (QP) problem is solved once the true data becomes
available. In the absence of active-set changes, the perturbed QP reduces to a perturbed
Newton step obtained from the solution of a linear system. It has been demonstrated that,
by computing a single Newton step per time step, the tracking error remains bounded to
second order with respect to the error between the predicted and the actual data. In order
to prove this result, a specialized discrete-time, shrinking-horizon control setting was used. A
limitation of this analysis is that the impact of the size of the time step gets lost, and the
results cannot be applied directly in a more general setting. Furthermore, no error bounds
have been provided for the case in which non smoothness effects are present along the manifold
(e.g., active-set changes).
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The continuation scheme reported in [14] is a manifold tracking strategy in which the
optimality conditions of the NLP are formulated as a differential equation. This permits a
detailed numerical analysis of the tracking error as a function of the size of the time step. Suf-
ficient conditions for the stability of the tracking error are derived. However, no order results
are established. For implementation, the differential equation is linearized and discretized
to derive the Newton step. The resulting linear system is solved approximately by using an
iterative scheme such as generalized minimum-residual (GMRES). The use of an iterative lin-
ear solver is particularly attractive because it can be terminated early, as opposed to direct
solvers. This is important in an on-line environment since it can significantly reduce the size
of the time step. However, a limitation of continuation schemes is that active-set changes need
to be handled indirectly using smoothing techniques (e.g., barrier functions [14, 17, 6]) which
can introduce numerical instability.

In this work, we present a framework for the analysis of on-line NLP strategies based on
generalized equation (GE) concepts. Our results are divided in two parts. First, we demon-
strate that if points along a solution manifold are consistently strongly regular, it is possible to
track the manifold approximately by solving a single linear complementarity problem (LCP)
per time step. We derive sufficient conditions that guarantee that the tracking error remains
bounded to second order with the size of the time step, even if the LCP is solved only ap-
proximately. These results generalize the approximation results in [7, 14] in the sense that we
consider both equality and inequality constraints, with the possibility of changing the active-
set along the manifold. In particular, the proposed approach does not require any smoothing,
which makes it numerically more robust. Second, we derive an approximation approach where
the NLP is reformulated using an augmented Lagrangean function. This permits the use of a
matrix-free, projected successive over-relaxation (PSOR) algorithm to solve the LCP at each
sampling time. We demonstrate that PSOR is particularly efficient because it can perform
linear algebra and active-set identification tasks efficiently.

The paper is structured as follows. In the next section, we review basic concepts of
parametric generalized equations. In Section 3 we will establish general approximation results
and derive stability conditions for the tracking error. In Section 4 we will specialize these to
the context of nonlinear programming. The augmented Lagrangean tracking algorithm and
associated stability properties are presented in Section 5. A numerical case study is provided
in Section 6. The paper closes with conclusions and directions of future work.

2. Generalized Equations. In this section, we use the notation from [15, 4]. Consider
the following parametric GE problem: For a given t ∈ T ⊆ ℜ, find w ∈ W ⊆ ℜn such that

0 ∈ F (w, t) + NK(w). (2.1)

Here, F : W × T → Z is a continuously differentiable mapping in both arguments. The
multifunction NK : W → 2Z is the normal cone operator,

NK(w) =

{

{ν ∈ W ′ | (w − α)T ν ≥ 0, ∀α ∈ K} if w ∈ K
∅ if w 6∈ K

(2.2)

where K ⊆ W is a polyhedral convex set and W ′ is the dual space of W . We denote the
solution of (2.1) as w∗

t .
Our final goal is to create a discrete-time scheme w̄tk

providing a cheap but stable ap-
proximation of the solution of (2.1), w∗

tk
. To achieve this, we will perform a single truncated

Newton iteration for the generalized equation per time step.

2.1. The Nonlinear Equation Case. While our work is concerned primarily with the
situation when the generalized equation contains inequalities, a good intuition as to why
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a truncated approximation scheme works can be obtained by considering the case without
inequality constraints F (w, t) = 0 or, equivalently, of K = ℜn. In this particular case, the
discrete-time scheme is obtained from

rtk
+ ∇wF (w̄tk

, tk)(w − w̄tk
) + ∇tF (w̄tk

, tk)∆t + F (w̄tk
, tk) = 0. (2.3)

Here, ∆t = tk+1 − tk, and rtk
models the fact that the Newton iteration is solved inexactly.

The solution of this linear system is w = w̄tk+1
. Assume that ||∇wF ||,

∣

∣

∣

∣∇wF−1
∣

∣

∣

∣, ∇tF
and all the second derivatives of F are uniformly bounded. After inverting ∇wF in (2.3)
squaring the terms, and using the triangle inequality, we obtain that there exists γ0 = 3 ·
max{
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∣
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2 ||∇tF ||2}, independent of t and w, such that

∣

∣

∣

∣w̄tk+1
− w̄tk

∣

∣

∣

∣

2 ≤ γ0

(

∆t2 + ||rtk
||2 + ||F (w̄tk

, tk)||2
)

. (2.4)

Using Taylor’s theorem, (2.3), and the triangle inequality, we obtain that there exists γ1 > 0,
dependent on the second derivatives of F , independent of t and w, such that

||F (w̄tk
, tk)|| ≤ ||rtk

|| + γ1

(

∆t2 +
∣

∣

∣

∣w̄tk+1
− w̄tk

∣

∣

∣

∣

2
)

. (2.5)

Then, if we choose ∆t ≤ 1
2 and solve the linear system (2.3) such that ||rtk

|| ≤ γ2 ||∆t||2, it

follows from (2.5), after replacing
∣

∣

∣

∣w̄tk+1
− w̄tk

∣

∣

∣

∣

2
from (2.4), that

||F (w̄tk
, tk)|| ≤ γ3∆t2 + γ4 ||F (w̄tk

, tk)||2 , (2.6)

where γ3 = γ2 + γ1(1 + γ0) + 1
2γ0γ1γ

2
2 , and γ4 = γ0γ1. It follows that, as soon as ∆t ≤

1/
√

4γ4γ3, we have that

||F (w̄tk
, tk)|| ≤ 2γ3∆t2 ⇒

∣

∣

∣

∣F (w̄tk+1
, tk+1)

∣

∣

∣

∣ ≤ 2γ3∆t2.

By induction, we have that the preceding holds for all k. Therefore, if we solve the linearized
problem sufficiently accurately, then for a sufficiently small time step we have that the residuals
at all time steps will not exceed O(∆t2). Therefore, the solution manifold of F (w, t) = 0 can
be tracked by the approximation scheme within O(∆t2). In particular, the discrete scheme
remains stable as ∆t → 0.

Approximation results can also be established for the more general case including in-
equality constraints (i.e., the cone K is not trivial), but this task is not straightforward. The
difficulties, as pointed out in [7], are technical and include the fact that, in the presence of
inequality constraints, we cannot algebraically invert the solution mapping. In addition, non-
smoothness effects prevent the application of Taylor-like results. These are the difficulties we
resolve in the following sections.

2.2. Linearized Generalized Equations. An important consequence of the structure
of (2.1) is that it allows us to analyze the smooth and nonsmooth components independently.
This greatly simplifies the task of establishing theoretical properties. As before, we are inter-
ested in constructing approximation schemes to track w∗

t . We start by defining the linearized
generalized equation (LGE) at a given solution w∗

t0
,

r ∈ F (w∗
t0

, t0) + Fw(w∗
t0

, t0)(w − w∗
t0

) + NK(w) (2.7)

where Fw(w, t) := ∇wF (w, t) ∈ ℜn×n. If K = ℜn
+ (the nonnegativity orthant), solving the

above LGE is equivalent to solving the perturbed linear complementarity problem,

w ≥ 0, ν = F (w∗
t0

, t0) + Fw(w∗
t0

, t0)∆w − r ≥ 0, wT ν = 0. (2.8)
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If Fw is a symmetric matrix then (2.8) are, in turn, the optimality conditions of the quadratic
programming (QP) problem,

min
∆w≥−w∗

t0

1

2
∆wT Fw(w∗

t0
, t0)∆w + F (w∗

t0
, t0)

T ∆w − rT ∆w. (2.9)

We can rewrite (2.1) at any point w, t in the neighborhood of w∗
t0

in terms of (2.7) by defining
the residual,

r(w, t) = F (w∗
t0

, t0) + Fw(w∗
t0

, t0)(w − w∗
t0

) − F (w, t). (2.10)

This gives, for any point satisfying (2.1),

r(w, t) ∈ F (w∗
t0

, t0) + Fw(w∗
t0

, t0)(w − w∗
t0

) + NK(w). (2.11)

The above formulation will allow us to bound the distance between w∗
t0

and neighboring points
in terms of r(w, t).

Central to this study is the inverse operator ψ−1 : Z → W of the perturbed LGE (2.11)
which we define as

w ∈ ψ−1[r] ⇔ r ∈ F (w∗
t0

, t0) + Fw(w∗
t0

, t0)(w − w∗
t0

) + NK(w). (2.12)

In other words, the operator is a multifunction from the space of the residual (perturbation) of
the LGE to the space of the solution. Note that the operator and the residual r(w, t) depend
implicitly on the linearization point w∗

t0
. This dependence will be made clear from the context,

so we will not carry it in the notation. Some basic properties arising from the definition of
the inverse operator are as follows:

w∗
t0
∈ψ−1[r(w∗

t0
, t0)] = ψ−1[0], w∗

t ∈ψ−1[r(w∗
t , t)].

Definition 2.1. (Strong Regularity [15]). It is said that w∗
t0

is a strongly regular solution
of the LGE (2.11) if there exists a neighborhood VW ⊆ W of w∗

t0
and a neighborhood VZ ⊆ Z

of r(w∗
t0

, t0) = 0, such that for every r ∈ VZ , (2.11) has a unique solution w = ψ−1[r] ∈ VW ,
and the inverse mapping ψ−1 : VZ → VW is Lipschitz with constant Lψ. That is, for any
r1, r2 ∈ VZ ,

‖ψ−1[r1] − ψ−1[r2]‖ ≤ Lψ‖r1 − r2‖.

Establishing conditions for strong regularity consists of seeking properties of the derivative
matrix Fw(w∗

t0
, t0) guaranteeing that ψ−1 becomes a single-valued function. To explain this,

we consider the case K = ℜn
+. At a given solution w∗

t0
, system (2.11) will have three different

components,

(Mw∗
t0

+ b)j = 0, (w∗
t0

)j > 0, j = 1 : na, (2.13a)

(Mw∗
t0

+ b)j = 0, (w∗
t0

)j = 0, j = na + 1 : ns + na, (2.13b)

(Mw∗
t0

+ b)j > 0, (w∗
t0

)j = 0, j = ns + na + 1 : n, (2.13c)

where n = na + ns + ni, M := Fw(w∗
t0

, t0), and b := F (w∗
t0

, t0) − Mw∗
t0

. By eliminating the
last ni inactive components from the system, M can be reduced to

M̂ =

[

M11 M12

M21 M22

]

, (2.14)
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and (2.11) can be expressed in the reduced form

r ∈ M̂y + b̂ + Nℜna×ℜ
ns
+

(y), (2.15)

where y ∈ ℜna+ns and b̂T = [bT
1 bT

2 ].

Theorem 2.2. (Theorem 3.1 in [15]). Consider the system (2.15) and the operator

ψ y := M̂y + b + Nℜna×ℜ
ns
+

(y).

Necessary and sufficient conditions for ψ−1 to be Lipschitzian are (i) M11 is nonsingular and
(ii) M22 −M21M

−1
11 M12 have positive principal minors. In Section 4, we will interpret these

conditions in the context of parametric NLP. Using this basic set of tools, we now establish
results that will allow us to construct algorithms able to track the solution manifold of (2.1).

3. Approximation Results. In our discussion, we will make the following blanket as-
sumption.

Assumption 1. The mapping Fw(w, t) is Lipschitz in both arguments with constant LFw
,

∀w ∈ W, t ∈ T .

Theorem 3.1. Assume w∗
t0

is strongly regular. Then, there exist neighborhoods VW and
VT and a unique and Lipschitz continuous solution w∗

t ∈ VW of the GE (2.1) that satisfies,
for each t = t0 + ∆t ∈ VT ,

(i) ‖w∗
t − w∗

t0
‖ ≤ Lw∆t (3.1)

with Lw > 0. In addition, consider the approximate solution w̄t computed from the perturbed
LGE (2.11) with r = F (w∗

t0
, t0) − F (w∗

t0
, t). We have that w̄t satisfies

(ii) ‖w∗
t − w̄t‖ = o(∆t),

and, if Assumption 1 holds,

(iii) ‖w∗
t − w̄t‖ = O(∆t2).

Proof. Result (i) follows from strong regularity (Def. 2.1) and Lipschitz continuity of ψ−1.
This can be established under a fixed-point argument for sufficiently small ∆t, as shown in
Theorem 2.1 in [15] and Theorem 5.13 in [4]. Result (ii) follows from strong regularity (Def.
2.1) and from the definition of the residual (2.10) for w∗

t ,

‖w∗
t − w̄t‖ ≤ Lψ‖r(w∗

t , t) − r‖
≤ Lψ‖

(

F (w∗
t0

, t0) + Fw(w∗
t0

, t0)(w
∗
t − w∗

t0
) − F (w∗

t , t)
)

−
(

F (w∗
t0

, t0) − F (w∗
t0

, t)
)

‖
≤ Lψ‖Fw(w∗

t0
, t0)(w

∗
t − w∗

t0
) − F (w∗

t , t) + F (w∗
t0

, t)‖.
From the integral mean value theorem we have

F (w∗
t , t) − F (w∗

t0
, t) =

∫ 1

0

Fw(w∗
t0

+ χ(w∗
t − w∗

t0
), t)(w∗

t − w∗
t0

)dχ, (3.2)

so we obtain, after replacing (3.2) in the preceding equation, that

‖w∗
t − w̄t‖ ≤ Lψ‖w∗

t − w∗
t0
‖
∥

∥

∥

∥

∫ 1

0

(

Fw(w∗
t0

, t0) − Fw(w∗
t0

+ χ(w∗
t − w∗

t0
), t)

)

dχ

∥

∥

∥

∥

(i)

≤ LψLw∆t

∥

∥

∥

∥

∫ 1

0

(

Fw(w∗
t0

, t0) − Fw(w∗
t0

+ χ(w∗
t − w∗

t0
), t)

)

dχ

∥

∥

∥

∥

= o(∆t).
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Result (iii) is a consequence of the Lipschitz continuity of Fw,

‖w∗
t − w̄t‖ ≤ LψLw∆t

∫ 1

0

∥

∥

(

Fw(w∗
t0

, t0) − Fw(w∗
t0

+ χ(w∗
t − w∗

t0
), t)

)∥

∥ dχ

≤ LψLw∆t

∫ 1

0

LFw
(χ

∥

∥(w∗
t − w∗

t0
)
∥

∥ + ∆t)dχ

(i)

≤ LψLw∆tLFw

(

1

2
Lw∆t + ∆t

)

≤ LψLwLFw

(

1

2
Lw + 1

)

∆t2 = o(∆t2).

The proof is complete.

Having a reference solution w∗
t0

, we can compute the approximate solution w̄t by solving
the LCP (2.8) or the QP (2.9) with r = F (w∗

t0
, t0)−F (w∗

t0
, t). From Theorem 3.1, we see that

this approximation can be expected to be close to the optimal solution w∗
t even in the presence

of active-set changes. In our approximate algorithm, however, we relax the requirement that
w∗

t0
be available. Instead, we consider a linearization point w̄t0 located in the neighborhood

of w∗
t0

. In addition, we assume that the LCP is not solved exactly. In other words, w̄t is the
solution of the LGE,

rǫ ∈ F (w̄t0 , t) + Fw(w̄t0 , t0)(w − w̄t0) + NK(w), (3.3)

where rǫ ∈ ℜn represents a given solution error. This system can be posed in form (2.11) by
the following definition:

r = rǫ + F (w∗
t0

, t0) + Fw(w∗
t0

, t0)(w − w∗
t0

) − F (w̄t0 , t) − Fw(w̄t0 , t0)(w − w̄t0). (3.4)

Note that, in this case, the perturbation r is an implicit function of the solution w = w̄t.
However, note that (3.4) is used only as an analytical tool. In practice, it is not solved as an
implicit LGE. In the following theorem we establish stability conditions for the tracking error
‖w̄t − w∗

t ‖.

Theorem 3.2. (Stability of Tracking Error). Assume w∗
t0

is a strongly regular solution
of (2.11). Define w̄t as the solution of the perturbed LGE (3.3) where w̄t0 is a point in the
neighborhood VW of w∗

t0
. The associated residual r(w̄t0 , t0) is assumed to satisfy

‖r(w̄t0 , t0) − r(w∗
t0

, t0)‖ ≤ δr,

with δr > 0. Assume there exists δǫ > 0 such that ‖rǫ‖ ≤ δǫ. If there exists κ > 0 and if ∆t
is chosen sufficiently small such that

LFw
Lψ (Lw + 1) ∆t δr ≤ κ∆t2 (3.5a)

(

LwLFw

(

1

2
Lw + 1

)

+ κ

)

∆t2 + δǫ ≤ δr

(

1 − 3

2
LFw

L2
ψδr

)

, (3.5b)

then the tracking error remains stable:

‖w̄t0 − w∗
t0
‖ ≤ Lψδr ⇒ ‖w̄t − w∗

t ‖ ≤ Lψδr.

Proof. From strong regularity (Def 2.1) and the assumed initial residual we have

‖w̄t0 − w∗
t0
‖ ≤ Lψ‖r(w̄t0 , t0) − r(w∗

t0
, t0)‖ ≤ Lψδr. (3.6)
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To bound ‖w̄t − w∗
t ‖ we need to bound the distance between the associated residuals. From

(3.4) and (2.10) we have

r − r(w∗
t , t)

= rǫ + F (w∗
t0

, t0) + Fw(w∗
t0

, t0)(w̄t − w∗
t0

) − F (w̄t0 , t) − Fw(w̄t0 , t0)(w̄t − w̄t0)

− F (w∗
t0

, t0) − Fw(w∗
t0

, t0)(w
∗
t − w∗

t0
) + F (w∗

t , t)

= rǫ + Fw(w∗
t0

, t0)(w̄t − w∗
t0

) − F (w̄t0 , t) − Fw(w̄t0 , t0)(w̄t − w̄t0)

− Fw(w∗
t0

, t0)(w
∗
t − w∗

t0
) + F (w∗

t , t)

= rǫ + F (w∗
t , t) − Fw(w∗

t0
, t0)(w

∗
t − w∗

t0
) − F (w∗

t0
, t)

+ F (w∗
t0

, t) − Fw(w̄t0 , t0)(w
∗
t0
− w̄t0) − F (w̄t0 , t)

+ Fw(w∗
t0

, t0)(w̄t − w∗
t + w∗

t − w∗
t0

) − Fw(w̄t0 , t0)(w̄t − w∗
t + w∗

t − w∗
t0

).

As in Theorem 3.1, we use the mean value theorem to compute the bounds:

‖F (w∗
t , t) − Fw(w∗

t0
, t0)(w

∗
t − w∗

t0
) − F (w∗

t0
, t)‖ ≤ LwLFw

(

1

2
Lw + 1

)

∆t2

‖F (w∗
t0

, t) − Fw(w̄t0 , t0)(w
∗
t0
− w̄t0) − F (w̄t0 , t)‖ ≤ LFw

(

1

2
L2

ψδ2
r + Lψδr∆t

)

.

We also have ‖rǫ‖ ≤ δǫ. The remaining terms can be bounded as follows:

‖Fw(w∗
t0

, t0)(w̄t − w∗
t + w∗

t − w∗
t0

) − Fw(w̄t0 , t0)(w̄t − w∗
t + w∗

t − w∗
t0

)‖
≤ LFw

‖w∗
t0
− w̄t0‖(‖w̄t − w∗

t ‖ + ‖w∗
t − w∗

t0
‖)

≤ LFw
Lψδr‖w̄t − w∗

t ‖ + LFw
LwLψδr∆t.

Merging terms, and moving all terms containing ‖w̄t − w∗
t ‖ to the left, we obtain

‖w̄t − w∗
t ‖ ≤ Lψ‖r − r(w∗

t , t)‖

≤ Lψδǫ + LψLwLFw

(

1

2
Lw + 1

)

∆t2 + LψLFw

(

1

2
L2

ψδ2
r + Lψδr∆t

)

+ LψLFw
Lψδr‖w̄t − w∗

t ‖ + LψLFw
LwLψδr∆t=⇒

‖w̄t − w∗
t ‖

≤
Lψδǫ + LψLwLFw

( 1
2Lw + 1)∆t2 + LψLFw

( 1
2L2

ψδ2
r + Lψδr∆t) + LψLFw

LwLψδr∆t

1 − LFw
L2

ψδr

.

To establish stability, we need to find conditions for ∆t such that ‖w̄t − w∗
t ‖ ≤ Lψδr. This

implies,

Lψδr ≥
Lψδǫ + LψLwLFw

( 1
2Lw + 1)∆t2 + LψLFw

( 1
2L2

ψδ2
r + Lψδr∆t) + LψLFw

LwLψδr∆t

1 − LFw
L2

ψδr

.

Dividing through by Lψ, multipliying with the denominator, and simplifying we have

δr −
3

2
LFw

L2
ψδ2

r ≥ δǫ + LwLFw

(

1

2
Lw + 1

)

∆t2 + LFw
Lψ (Lw + 1) ∆tδr.

This condition is satisfied if (3.5a)-(3.5b) hold. The proof is complete.
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Corollary 3.3. Assume conditions of Theorem 3.2 hold ∀ t ∈ [t0, tf ]. Then,

‖w̄tk+1
− w∗

tk+1
‖ ≤ Lψδr, tk+1 = tk + k · ∆t, ∀ k ≤ tf − t0

∆t
.

Proof. Follows by induction.

Discussion of Theorem 3.2. At every tk, ∆w̄tk
is obtained by solving the LGE (3.3).

The approximation of w∗
tk+1

is obtained from w̄tk+1
= w̄tk

+ ∆w̄tk
. We have thus created an

algorithm that tracks the solution manifold of the parametric GE (2.1) by solving inexactly
(within δǫ) one LCP at every step. This allows us to use an iterative algorithm that can be
terminated early.

From Theorem 3.2, a condition for (3.5a)-(3.5b) to hold is that

‖r(w̄tk
, tk) − r(w∗

tk
, tk)‖ = ‖F (w∗

tk
, tk) + F (w∗

tk
, tk)(w̄tk

− w∗
tk

) − F (w̄tk
, tk)‖ ≤ δr, (3.7)

where r(w∗
tk

, tk) = 0. This condition gives a guideline for monitoring the progress of the
algorithm. Condition (3.5a) can be satisfied easily for δr = o(∆t), O(∆t2). Condition (3.5b)
is stricter. If δr = o(∆t), this condition states that the solution error should be at least
δǫ = o(∆t). The first term on the left-hand side represents the tracking error of w̄t if w∗

t0
is

used as linearization point. If we choose δr = O(∆t2) at the initial point, and δǫ = O(∆t2) at
all subsequent iterations, there will exist κ such that for all ∆t sufficiently small the tracking
error is O(∆t2) as stated in Theorem 3.1. Note that a small Lψ is beneficial because it relaxes
both (3.5a) and (3.5b). As seen in Theorem 2.2, this Lipschitz constant can be related to the
conditioning of the derivative matrix Fw.

We also note that the technique of proof for Theorem 3.2 is similar to the one concerning
the geometrical infeasibility of a time-stepping method [1] for differential variational inequal-
ities (DVI) [13]. Indeed, one can prove that the parameteric solution w∗

t satisfies a DVI.
Nevertheless, the fact that the problem has no dynamics makes it easy to solve directly rather
than casting it as a DVI.

4. On-Line Nonlinear Programming. We now specialize the results of the previous
sections to parametric NLP problems of the form

min f(x, t), s.t. c(x, t) = 0, x ≥ 0. (4.1)

Here, x ∈ ℜn and the mappings f : Ω×T → ℜ, c : Ω×T → ℜm are assumed to be continuously
differentiable from the open sets Ω ⊆ ℜn and T ⊆ ℜ. To simplify our discussion and without
loss of generality, we consider only the case where all components of x are subject to inequality
constraints. The first-order optimality conditions of this problem are

∇xL(w, t) − ν = 0, c(x, t) = 0, xT ν = 0, x ≥ 0, ν ≥ 0. (4.2)

The Lagrange function is defined as

L(w, t) = f(x, t) + λT c(x, t), (4.3)

where λ ∈ ℜm are Lagrange multipliers and wT = [xT , λT ]. Note that (4.2) can be formulated
without introducing the extra variables ν ∈ ℜn. These multipliers are introduced only for
clarity in the presentation. The optimality conditions can be posed as a GE of the form,

0 ∈ ∇xL(w, t) − ν + Nℜn(x) (4.4a)

0 ∈ c(x, t) + Nℜm(λ) (4.4b)

0 ∈ x + Nℜn
+
(ν). (4.4c)
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If we linearize the optimality conditions around a given solution w∗
t0

we get,

0 ∈





Hxx(w∗
t0

, t0) JT
x (x∗

t0
, t0) −In

Jx(x∗
t0

, t0)
In









∆x
∆λ
∆ν



+ (4.5)





∇xL(w∗
t0

, t0) − ν∗
t0

c(x∗
t0

, t0)
x∗

t0



 +





Nℜn(x)
Nℜm(λ)
Nℜn

+
(ν)



 .

Here, ∆x := x − x∗
t0

, ∆λ := λ − λ∗
t0

, ∆ν := ν − ν∗
t0

, Jx(x∗
t0

, t0) := ∇xc(x∗
t0

, t0), and
Hxx(w∗

t0
, t0) := ∇xxL(w∗

t0
, t0). As shown in Section 2, to establish conditions for strong

regularity, we eliminate the ni components corresponding to the pair (x∗
t0

)j > 0, (ν∗
t0

)j = 0.
This gives a reduced matrix of the form

[

K(w∗
t0

, t0) −E

E
T

]

=









Hxx(w∗
t0

, t0) JT
x (x∗

t0
, t0) −Ina

−Ins

Jx(x∗
t0

, t0)
Ina

Ins









, (4.6)

where E = [Ins
| 0 | 0].

Theorem 4.1. (Strong Regularity of NLP). Let f(x, ·) and c(x, ·) be functions from the
open set Ω ∈ ℜn into ℜ,ℜm that are at least twice differentiable at a point x∗

t0
∈ Ω. Suppose

that w∗
t0

solves (4.4). If, (i) for every nonzero vector w ∈ ℜn satisfying Jx(x∗
t0

, t0)w =
0, Ina

w = 0, one has wT Hxx(w∗
t0

, t0)w > 0, and (ii) [JT
x (x∗

t0
, t0) | Ina

| Ins
] is full rank, then

(4.5) is strongly regular at this point.
Proof. From Theorem 2.2 we have that it suffices K(w∗

t0
, t0) to be nonsingular and the

Schur complement matrix E
T K(w∗

t0
, t0)

−1
E to be positive definite. As shown in Theorem 4.1

in [15], this is consequence of conditions (i) and (ii).

The conditions of Theorem 4.1 are the strong second-order conditions and the linear in-
dependence constraint qualification (LICQ) (Chapter 12 in [12]). As seen in Section 2, strong
regularity guarantees that there exist nonempty neighborhoods where the solution of the lin-
earized GE is a Lipschitz continuous function of the problem data. A similar result has been
obtained in [8] without resorting to GE results. In [16] it is shown that by weakening LICQ to
the Mangasarian-Fromovitz constraint qualification (MFCQ), the Lipschitz continuity prop-
erties of the solution are lost (see discussion after Corollary 4.3). The reason is that LICQ
guarantees that the multifunction (4.4) becomes a single-valued function on a neighborhood
of the solution (i.e., the multipliers are unique). Nevertheless, boundedness results still hold
under MFCQ. We emphasize that strict complementarity slackness is not necessary to guar-
antee strong regularity. This property is crucial since, as t varies and the active-set change,
points at which complementarity slackness does not hold will be encountered.

Consider the perturbed QP problem formed at w̄T
t0

= [x̄T
t0

, λ̄T
t0

] in the neighborhood of
w∗

t0
,

min
∆x≥−x̄t0

∇xf(x̄t0 , t)
T ∆x +

1

2
∆xT Hxx(w̄t0 , t0)∆x (4.7a)

s.t. c(x̄t0 , t) + Jx(x̄t0 , t0)∆x = 0, (4.7b)

where ∆x = x − x̄t0 . Note the perturbation t0 ← t in the equality constraints and in the
gradient of the objective function. The solution of this problem is given by the step ∆w̄t toward
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w∗
t . The optimality conditions of this QP formulate an LGE of the form (3.3). Therefore, the

results of Theorem 3.2 apply directly.

5. Augmented Lagrangean Strategy. The approximation results of the previous sec-
tions can be used to derive algorithms to track of the solution manifold of the NLP (4.1). For
instance, as we have seen, solving a single QP (4.7) at each time step is sufficient. In our
context, however, we assume that the QPs are large-scale and may contain many degrees of
freedom and active bounds. Therefore, it is crucial to have a fast solution strategy for the QP
itself in order to keep ∆t as small as possible. Here, we propose to reformulate the NLP using
an augmented Lagrangean function and solve the underlying QP using a PSOR strategy. The
justification of this approach is provided at the end of this section. To derive our strategy, we
define the augmented Lagrangean function,

LA(x, λ̄, t, ρ) = f(x, t) + λ̄T c(x, t) +
ρ

2
‖c(x, t)‖2. (5.1)

A strategy to solve the original NLP (4.1) consists of computing solutions of the augmented
Lagrangean subproblem

min
x≥0

LA(x, λ̄, t, ρ) (5.2)

for a sequence of increasing ρ. In the following, we assume that the penalty parameter ρ is
not updated but remains fixed to a sufficiently large value. Consequently, we drop from the
notation any dependencies on this parameter. Note that the multipliers λ̄ act as parameters of
the augmented Lagrangean subproblem. The solution of the subproblem is defined as x∗(λ̄, t).
The multipliers can be updated externally as

λ̄ ← λ̄ + ρ c(x∗(λ̄, t), t). (5.3)

We thus define the solution pair x∗(λ̄, t), Λ∗(λ̄, t) = λ̄ + ρ c(x∗(λ̄, t), t). The first-order condi-
tions of (5.2) can be posed as a GE of the form

0 ∈ ∇xLA(x, λ̄, t) + Nℜn
+
(x), (5.4)

where

∇xLA(x, λ̄, t) = ∇xf(x, t) + (λ̄ + ρ c(x, t))T∇xc(x, t).

The linearized version of (5.4) defined at the NLP solution x∗
t0

, λ̄ = λ∗
t0

is given by

r ∈ ∇xLA(x∗
t0

, λ∗
t0

, t0) + ∇xxLA(x∗
t0

, λ∗
t0

, t0)(x − x∗
t0

) + Nℜn
+
(x) (5.5)

for r = 0. To establish perturbation results for the augmented Lagrangean LGE in connection
with those of the original NLP (4.1), we consider the following equivalent formulation of (5.4),
proposed in [3]:

0 ∈ F (w, p(λ̄), t) + Nℜn
+
×ℜm(w), (5.6)

where

F (w, p(λ̄), t) =

[ ∇xf(x, t) + ΛT∇xc(x, t)
c(x, t) + p(λ̄) + 1

ρ
(λ∗

t0
− Λ)

]

, (5.7)

wT = [xT ΛT ], and

p(λ̄) =
1

ρ
(λ̄ − λ∗

t0
). (5.8)
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For t = t0 and λ̄ = λ∗
t0

, we have p(λ̄) = 0, x∗(p(λ̄), t) = x∗
t0

, and Λ∗(p(λ̄), t) = λ∗
t0

. The
solution of GE (5.6) is denoted as w∗(p(λ̄), t). The linearized version of (5.6) at w∗

t0
is

r ∈ F (w∗
t0

, 0, t0) + Fw(w∗
t0

, 0, t0)(w − w∗
t0

) + Nℜn
+
×ℜm(w), (5.9)

where

Fw(w∗
t0

, 0, t0) =

[ ∇xxL(w∗
t0

, t0) ∇xc(x∗
t0

, t0)
∇T

x c(x∗
t0

, t0) − 1
ρ
Im

]

. (5.10)

After applying the reduction procedure of Section 2 to the derivative matrix (5.10) we can
show that, for sufficiently large ρ, the reduced matrix satisfies conditions of Theorem 2.2 at
a strongly regular solution w∗

t0
. The proof of this assertion is long and will be omitted here.

It follows along the lines of the results of Section 4 and uses the results of Proposition 2.4 in
[3]. In particular, one needs to show that the negative diagonal matrix in the bottom right-
hand corner of (5.10) does not affect significantly the conditioning of the derivative matrix
for sufficiently large ρ. Because of the equivalence between (5.4) and (5.6), the same can be
argued for the Hessian matrix ∇xxLA(x∗

t0
, λ∗

t0
, t0). We emphasize that the reformulation (5.6)

is considered only for theoretical purposes. In practice, (5.4) is solved.

We now establish the following approximation results in the context of the augmented
Lagrangean framework.

Lemma 5.1. Assume w∗
t0

is a strongly regular solution of (5.5). Then, there exist neigh-
borhoods VW ,VT , and Vp where the solution of the augmented Lagrangean subproblem (5.2)
satisfies, for each t = t0 + ∆t ∈ VT , p(λ̄) ∈ Vp,

(i) ‖w∗(λ̄, t) − w∗
t0
‖ ≤ Lw

ρ
‖λ̄ − λ∗

t0
‖ + Lw∆t. (5.11)

Furthermore, consider the approximate solution x̄(λ̄, t) obtained from the perturbed LGE (5.5)
with

r = ∇xLA(x∗
t0

, λ∗
t0

, t0) −∇xLA(x∗
t0

, λ̄, t), (5.12)

and associated multiplier Λ̄(λ̄, t) = λ̄ + ρ c(x̄(λ̄, t), t). The pair, denoted by w̄(λ̄, t), satisfies

(ii) ‖w̄(λ̄, t) − w∗(λ̄, t)‖ = O

(

(

∆t +
1

ρ
‖λ̄ − λ∗

t0
‖
)2

)

. (5.13)

Proof. The result follows from the equivalence between (5.4) and (5.6), by recalling that
p(λ∗

t0
) = 0, p(λ̄) = 1

ρ
‖λ̄ − λ∗

t0
‖, and by applying Theorem 3.1.

This result states that the solution of a perturbed augmented Lagrangean LGE formed at
w∗

t0
provides a second-order approximation of the subproblem solution w∗(λ̄, t). The impact

of the multiplier error can be made arbitrarily small by fixing ρ to a sufficiently large value.
Stability of the tracking error is established in the following theorem. Here, we relax the
requirement of the availability of w∗

t0
. In addition, we establish conditions for the step size ∆t

and the penalty parameter ρ guaranteeing that, by solving a single augmented Lagrangean
LGE per time step, the tracking error remains stable.

Theorem 5.2. (Stability of Tracking Error for Augmented Lagrangean). Assume w∗
t0

is
a strongly regular solution of (5.5). Define x̄(λ̄, t) as the solution of the LGE,

rǫ ∈ ∇xLA(x̄t0 , λ̄, t) + ∇xxLA(x̄t0 , λ̄, t0)(x − x̄t0) + Nℜn
+
(x), (5.14)
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with associated multiplier update Λ̄(λ̄, t) = λ̄ + ρ c(x̄(λ̄, t), t). The pair is denoted by w̄(λ̄, t).
The reference linearization point w̄T

t0
= [x̄T

t0
, Λ̄T

t0
] with Λ̄t0 = λ̄ + ρ c(x̄t0 , t0) is assumed to

exist in the neighborhood VW of w∗
t0

. The associated residual r(w̄t0 , t0) is assumed to satisfy
‖r(w̄t0 , t0) − r(w∗

t0
, t0)‖ ≤ δr with δr > 0. Furthermore, assume there exists δǫ > 0 such that

‖rǫ‖ ≤ δǫ. If there exists κ > 0, ∆t is chosen sufficiently small and ρ sufficiently large such
that

LFw
Lψ

(

Lw

(

1 +
Lψ

ρ

)

+ 1

)

∆tδr +
Lw

ρ

(

δr +
Lw

Lψ

∆t

)

≤ κ

(

∆t +
Lψδr

ρ

)2

(5.15a)

(

LwLFw

(

1

2
Lw + 1

)

+ κ

) (

∆t +
Lψδr

ρ

)2

+ δǫ ≤ δr

(

1 −
(

3

2
+

Lψ

ρ

)

LFw
L2

ψδr

)

. (5.15b)

Then, the tracking error remains stable:

‖w̄t0 − w∗
t0
‖ ≤ Lψδr ⇒ ‖w̄(λ̄, t) − w∗

t ‖ ≤ Lψδr.

Proof. Using the equivalence between (5.4) and (5.6), we have w̄(λ̄, t) = w̄(p(λ̄), t). Conse-
quently, we need to bound

‖w̄(p(λ̄), t) − w∗
t ‖ = ‖w̄(p(λ̄), t) − w∗(p(λ̄), t) + w∗(p(λ̄), t) − w∗

t ‖
≤ ‖w̄(p(λ̄), t) − w∗(p(λ̄), t)‖ + ‖w∗(p(λ̄), t) − w∗

t ‖. (5.16)

The second term, the distance between the solution of the augmented Lagrangean subprob-
lem w∗(p(λ̄), t) and the NLP solution w∗

t , can be bounded by using the Lipschitz continuity
property,

‖w∗(p(λ̄), t) − w∗
t ‖ = ‖w∗(p(λ̄), t) − w∗(p(λ∗

t ), t)‖
≤ Lw‖p(λ̄) − p(λ∗

t )‖
≤ Lw‖p(λ̄)‖ + Lw‖p(λ∗

t )‖. (5.17)

The distance between w∗(p(λ̄), t) and the approximate solution of the LGE (5.14) follows from
the definition of strong regularity.

‖w̄(p(λ̄), t) − w∗(p(λ̄), t)‖ ≤ Lψ‖r − r(w∗(p(λ̄), t), t)‖.

From the equivalence between (5.4) and (5.6) we have that solving (5.14) is equivalent to
solving

rǫ ∈ F (w̄t0 , p(λ̄), t) + Fw(w̄t0 , p(λ̄), t0)(w − w̄t0) + Nℜn
+
×ℜm(w).

Consequently, the perturbation r associated to w̄(p(λ̄), t) is given by

r = rǫ + F (w∗
t0

, 0, t0) + Fw(w∗
t0

, 0, t0)(w − w∗
t0

) − F (w̄t0 , p(λ̄), t)

− Fw(w̄t0 , p(λ̄), t0)(w − w̄t0),
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with w = w̄(p(λ̄), t). The residual r(w∗(p(λ̄), t), t) is obtained from (2.10). We have

A = r − r(w∗(p(λ̄), t))

= rǫ + F (w∗
t0

, 0, t0) + Fw(w∗
t0

, 0, t0)(w̄(p(λ̄), t) − w∗
t0

)

− F (w̄t0 , p(λ̄), t) − Fw(w̄t0 , p(λ̄), t0)(w̄(p(λ̄), t) − w̄t0)

− F (w∗
t0

, 0, t0) − Fw(w∗
t0

, 0, t0)(w
∗(p(λ̄), t) − w∗

t0
) + F (w∗(p(λ̄), t), p(λ̄), t)

= rǫ + Fw(w∗
t0

, 0, t0)(w̄(p(λ̄), t) − w∗
t0

) + F (w∗
t0

, p(λ̄), t)

− F (w̄t0 , p(λ̄), t) − Fw(w̄t0 , p(λ̄), t0)(w̄(p(λ̄), t) − w̄t0)

− Fw(w∗
t0

, 0, t0)(w
∗(p(λ̄), t) − w∗

t0
) + F (w∗(p(λ̄), t), p(λ̄), t) − F (w∗

t0
, p(λ̄), t)

= rǫ + F (w∗(p(λ̄), t), p(λ̄), t) − Fw(w∗
t0

, 0, t0)(w
∗(p(λ̄), t) − w∗

t0
) − F (w∗

t0
, p(λ̄), t)

+ F (w∗
t0

, p(λ̄), t) − Fw(w̄t0 , p(λ̄), t0)(w
∗
t0
− w̄t0) − F (w̄t0 , p(λ̄), t)

+ Fw(w∗
t0

, 0, t0)(w̄(p(λ̄), t) − w∗
t + w∗

t − w∗
t0

)

− Fw(w̄t0 , p(λ̄), t0)(w̄(p(λ̄), t) − w∗
t + w∗

t − w∗
t0

).

We use the mean-value theorem,

F (w∗(p(λ̄), t), p(λ̄), t) − F (w∗
t0

, p(λ̄), t)

=

∫ 1

0

Fw(w∗
t0

+ χ(w∗(p(λ̄), t) − w∗
t0

), p(λ̄), t)(w∗(p(λ̄), t) − w∗
t0

)dχ,

to compute the following bound:

B = ‖F (w∗(p(λ̄), t), p(λ̄), t) − Fw(w∗
t0

, 0, t0)(w
∗(p(λ̄), t) − w∗

t0
) − F (w∗

t0
, p(λ̄), t)‖

≤
∫ 1

0

∥

∥

(

Fw(w∗
t0

+ χ(w∗(p(λ̄), t) − w∗
t0

), p(λ̄), t) − Fw(w∗
t0

, 0, t0)
)

(w∗(p(λ̄), t) − w∗
t0

)
∥

∥ dχ

≤ ‖w∗(p(λ̄), t) − w∗
t0
‖
∫ 1

0

LFw

(

χ‖w∗(p(λ̄), t) − w∗
t0
‖ + ‖p(λ̄)‖ + ∆t

)

dχ

≤ 1

2
LFw

‖w∗(p(λ̄), t) − w∗
t0
‖2 + LFw

‖w∗(p(λ̄), t) − w∗
t0
‖(‖p(λ̄)‖ + ∆t)

≤ 1

2
LFw

L2
w

(

‖p(λ̄)‖ + ∆t
)2

+ LFw
Lw

(

‖p(λ̄)‖ + ∆t
)

(‖p(λ̄)‖ + ∆t)

≤ LwLFw

(

1

2
Lw + 1

)

(

∆t + ‖p(λ̄)‖
)2

.

Similarly,

C = ‖F (w∗
t0

, p(λ̄), t) − Fw(w̄t0 , p(λ̄), t0)(w
∗
t0
− w̄t0) − F (w̄t0 , p(λ̄), t)‖

≤
∫ 1

0

‖Fw(w̄t0 + χ(w̄t0 − w∗
t0

), p(λ̄), t) − Fw(w̄t0 , p(λ̄), t0)‖‖w̄t0 − w∗
t0
‖dχ

≤ ‖w̄t0 − w∗
t0
‖
∫ 1

0

LFw

(

χ
∣

∣

∣

∣w̄t0 − w∗
t0

∣

∣

∣

∣ + ∆t
)

dχ

≤ 1

2
LFw

‖w̄t0 − w∗
t0
‖2 + LFw

‖w̄t0 − w∗
t0
‖∆t

≤ 1

2
LFw

L2
ψδ2

r + LFw
Lψδr∆t.
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The remaining terms can be bounded as

D = ‖Fw(w∗
t0

, 0, t0)(w̄(p(λ̄), t) − w∗
t + w∗

t − w∗
t0

) − Fw(w̄t0 , p(λ̄), t0)(w̄(p(λ̄), t) − w∗
t + w∗

t − w∗
t0

)‖
≤ ‖Fw(w∗

t0
, 0, t0) − Fw(w̄t0 , p(λ̄), t0)‖‖w̄(p(λ̄), t) − w∗

t + w∗
t − w∗

t0
‖

≤ LFw

(

‖w∗
t0
− w̄t0‖ + ‖p(λ̄)‖

) (

‖w̄(p(λ̄), t) − w∗
t ‖ + ‖w∗

t − w∗
t0
‖
)

≤ LFw

(

Lψδr + ‖p(λ̄)‖
) (

‖w̄(p(λ̄), t) − w∗
t ‖ + Lw∆t

)

.

Using ‖rǫ‖ ≤ δǫ and merging terms B, C, and D into A, we obtain

‖w̄(p(λ̄), t) − w∗(p(λ̄), t)‖ ≤ Lψδǫ + LψLwLFw

(

1

2
Lw + 1

)

(

∆t + ‖p(λ̄)‖
)2

+ Lψ

1

2
LFw

L2
ψδ2

r + LψLFw
Lψδr∆t

+ LψLFw

(

Lψδr + Lψ‖p(λ̄)‖
) (

‖w̄(p(λ̄), t) − w∗
t ‖ + Lw∆t

)

.
(5.18)

We substitute (5.17) and (5.18) in (5.16) and apply,

‖p(λ̄)‖ ≤ 1

ρ
‖λ̄ − λ∗

t0
‖ ≤ Lψ

ρ
‖r(w̄t0 , t0) − r(w∗

t0
, t0)‖ ≤ Lψ

ρ
δr

‖p(λ∗
t )‖ ≤ 1

ρ
‖λ∗

t − λ∗
t0
‖ ≤ Lw

ρ
∆t (5.19)

to obtain

‖w̄(p(λ̄), t) − w∗
t ‖

≤ Lψδǫ + LψLwLFw

(

1

2
Lw + 1

)

(

∆t + ‖p(λ̄)‖
)2

+ Lψ

1

2
LFw

L2
ψδ2

r + LψLFw
Lψδr∆t

+ LψLFw

(

Lψδr + Lψ‖p(λ̄)‖
) (

‖w̄(p(λ̄), t) − w∗
t ‖ + Lw∆t

)

+ Lw‖p(λ̄)‖ + Lw‖p(λ∗
t )‖

≤ Lψδǫ + LψLwLFw

(

1

2
Lw + 1

) (

∆t +
Lψδr

ρ

)2

+
1

2
LψLFw

L2
ψδ2

r + LψLFw
Lψδr∆t

+ LFw
L2

ψδr

(

1 +
Lψ

ρ

)

(

‖w̄(p(λ̄), t) − w∗
t ‖ + Lw∆t

)

+ Lw

Lψδr

ρ
+ L2

w

∆t

ρ
.

For stability we require ‖w̄(p(λ̄), t) − w∗
t ‖ ≤ Lψδr. This implies

Lψδr ≥
Lψδǫ + Lw

ρ

(

L2
ψδr + Lw∆t

)

+ LψLwLFw

(

1
2Lw + 1

)

(

∆t +
Lψδr

ρ

)2

1 − LFw
L2

ψδr

(

1 +
Lψ

ρ

)

+
LψLFw

( 1
2L2

ψδ2
r + Lψδr∆t) + LFw

L2
ψδr

(

1 +
Lψ

ρ

)

Lw∆t

1 − LFw
L2

ψδr

(

1 +
Lψ

ρ

) .
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Dividing through by Lψ and rearranging we have,

δr − LFw
L2

ψδ2
r

(

1 +
Lψ

ρ

)

≥ δǫ +
Lw

ρ

(

δr +
Lw

Lψ

∆t

)

+ LwLFw

(

1

2
Lw + 1

) (

∆t +
Lψδr

ρ

)2

+ LFw
(
1

2
L2

ψδ2
r + Lψδr∆t) + LFw

LψLwδr

(

1 +
Lψ

ρ

)

∆t

δr −
(

3

2
+

Lψ

ρ

)

LFw
L2

ψδ2
r

≥ δǫ + LwLFw

(

1

2
Lw + 1

) (

∆t +
Lψδr

ρ

)2

+ LFw
Lψ

(

Lw

(

1 +
Lψ

ρ

)

+ 1

)

δr∆t +
Lw

ρ

(

δr +
Lw

Lψ

∆t

)

.

This last condition is satisfied if (5.15a)-(5.15b) hold. The proof is complete .

Discussion of Theorem 5.2. The recursive stability result of Corollary 3.3 also applies
in this context. Conditions (5.15a)-(5.15b) reduce to (3.5a)-(3.5b) for ρ → ∞. Therefore, sim-
ilar order results to those of Theorem 3.2 can be expected for sufficiently large ρ. Note also
that the initial multiplier error (bounded by δr) always appears divided by ρ. This indicates
that relatively large initial multiplier errors can be tolerated by increasing ρ. Nevertheless,
note that the second term on the left hand side of (5.15a) remains o(∆t) even if δr = O(∆t2).
In other words, this condition is more restrictive than (3.5a). This term arises from the appli-
cation of the Lipschitz property to bound ‖λ∗

t − λ∗
t0
‖ One could try the alternative approach

of using the residuals to obtain less conservative bounds for ‖w∗(p(λ̄), t) − w∗(p(λ∗
t ), t)‖ in

(5.17). Even with this approach, however, we have not been able to do so. This difficulty
seems to be related to the fact that the multiplier update is only first-order [3], so, at least in
the form presented here, we find it unlikely that the method would succeed in converging as
∆t → 0 without letting ρ → ∞.

As a final remark, we point out that the stability conditions can be satisfied for fixed
and sufficiently large κ as long as ρ = O

(

1
∆t

)

and δr = O(∆t2). This has the side effect of
having ρ effectively as a penalty parameter, a situation that resembles the use of a smoothing
barrier function and that may raise stability problems. While both penalizations arise in
different contexts, an important question is whether the augmented Lagrangean penalization
is more stable than that obtained by using smoothing penalty functions. In our scheme, the
penalty parameter is finite for every fixed ∆t, and the scheme is guaranteed to be stable.
For continuation schemes, however, stability results incorporating smoothing functions are
currently lacking. A simple numerical comparison will be presented in the next section. A
more rigorous stability analysis is a left as an interesting topic for future research.

In order to solve the QP associated to the LGE (5.14), we follow a PSOR approach. The
QP has the form,

min
z≥α

1

2
zT Mz + bT z. (5.20)

Any solution of this QP solves the LCP,

Mz + b ≥ 0, z − α ≥ 0, (z − α)T (Mz + b) = 0. (5.21)
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Consider the following PSOR algorithm adapted from [10, 11]:

PSOR Algorithm.
Given z0 ≥ α, compute for k = 0, 1, ..., niter,

zk+1
i = (1 − ω)zk

i − ω

Mii





∑

j<i

Mijz
k+1
j +

∑

j>i

Mijz
k
j − bi





zk+1
i = max

(

zk+1
i , αi

)

, i = 1, ..., n, (5.22)

where ω is the relaxation factor.

Theorem 5.3. (Theorem 2.1 in [11]). Let M be symmetric positive definite. Then, each
accumulation point of the sequence {zk} generated by (5.22) converges to a solution of the
LCP (2.8). The rate of convergence is R-linear.

A suitable measure of progress of the PSOR algorithm is the projected gradient (or resid-
ual) PK (M z + b), where K := {z | z ≥ α} and

(PK(g))j =

{

min {0, gj} if zj = αj

gj if zj > αj .
(5.23)

This is based on the fact that a solution of (5.20) satisfies PK (M z + b) = 0. Similarly, the
progress of the algorithm can be monitored by using the projected gradient of the augmented
Lagrangean function Pℜn

+

(

∇xLA(x̄tk
, λ̄tk

, tk, ρ)
)

. This is a more direct convergence check of

(2.1), as opposed to (3.7). The computational complexity of PSOR is at most O(n2) where n
is the dimension of x. We can now establish our tracking algorithm (4.1), which we refer to
as AugLag:

AugLag Tracking Algorithm.
Given x̄t0 , λ̄t0 , ∆t, ρ, niter,

1. Evaluate ∇xLA(x̄tk
, λ̄tk

, tk+1, ρ) and ∇xxLA(x̄tk
, λ̄tk

, tk, ρ).
2. Compute step ∆x̄tk+1

by applying niter PSOR iterations to (5.20) with M = ∇xxLA(x̄tk
, λ̄tk

, tk, ρ),
b = ∇xLA(x̄tk

, λ̄tk
, tk+1, ρ).

3. Update primal variables x̄tk+1
= x̄tk

+∆x̄tk+1
and multipliers λ̄tk+1

= λ̄tk
+ρ c(x̄tk+1

, tk+1).
4. Set k ← k + 1.

Justification of Augmented Lagrangean Framework. To justify the choice of the
AugLag framework from a computational point of view we make the following observations.
If the QP (4.7) is sparse, full-space active-set and interior-point solvers are the most efficient
alternatives [2, 18]. In on-line NLP applications, active-set strategies have been preferred
because warm-start information can be used to reduce the number of iterations, as opposed to
interior-point methods. However, the time per iteration in an interior-point solver tends to be
smaller because the linear algebra can be done more efficiently. The reason is that the structure
of the Karush-Kuhn-Tucker matrix is fixed and, consequently, symbolic factorizations need to
be applied only once. In addition, high-level structures can be exploited. In most active-set
and interior-point implementations, direct indefinite linear solvers are used to compute the
search step. The accuracy of these steps is high. However, the computational overhead of a
single factorization can be very high as well. As an alternative, one could consider the use of
iterative linear solvers such as QMR, GMRES, or PCG in an interior-point framework [5]. A
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problem with this approach is that multiple linear systems still need to be solved since active-
set identification (i.e., barrier parameter update) is performed externally. This situation could
be avoided by fixing the barrier parameter to a given value. However, as we will see in the
next section, this smoothing approach is not very robust. Based on these observations, we
argue that the AugLag strategy is attractive because: (i) the iteration matrix (Hessian of the
augmented Lagrangean) remains at least positive semi-definite close to the solution manifold,
(ii) it performs linear algebra and active-set identification tasks simultaneously, (iii) it can
exploit warm-start information, and (iv) it has a favorable computational complexity. We
emphasize that achieving a high accuracy with PSOR might require a very large number of
iterations. As demonstrated by Theorem 5.2, however, this does not represent a limitation in
an on-line setting. Nevertheless, it does limits the attractiveness of PSOR in a more general
NLP context.

6. Numerical Example. To illustrate the developments, we consider the receding-
horizon control of a nonlinear CSTR [9]. The optimal control formulation is given by

min
u(τ)

∫ t+T

t

(

wT (zT − zsp
T )2 + wC(zC − zsp

C )2 + wu(u − usp)2
)

dτ

s.t.
dzC

dτ
=

zC − 1

θ
+ k0zCexp

[−Ea

zT

]

, zC(0) = zC(t)

dzT

dτ
=

zT − zf
T

θ
− k0zCexp

[−Ea

zT

]

+ αu(zT − zcw
T ), zT (0) = zT (t)

zmin
C ≤ zC ≤ zmax

C , zmin
T ≤ zT ≤ zmax

T , umin ≤ u ≤ umax.

The system involves two states, z(τ) = [zC(τ), zT (τ)], corresponding to dimensionless concen-
tration and temperature, and one control, u(τ), corresponding to the cooling water flow rate.
The model time dimension is denoted by τ , and the real time dimension is denoted by t. Ac-
cordingly, the receding-horizon is defined as τ ∈ [t, t + T ], and the initial conditions are zT (t)

and zC(t). The model parameters are zcw
T = 0.38, zf

T = 0.395, Ea = 5, α = 1.95×104, θ = 20,
k0 = 300, wC = 1 × 106, wT = 1 × 103, and wu = 1 × 10−3. The bounds are set to zmin

C = 0,
zmax
C = 0.5, zmin

T = 0.5, zmax
T = 1.0, umin = 0.25, and umax = 0.45. The set-points are

denoted by the superscript sp. For implementation, the optimal control problem is converted
into an NLP of the form in (4.1) by applying an implicit Euler discretization scheme with
N = 100 grid points and ∆τ = 0.25. The NLP is parametric in the initial states, which are
implicit functions of t. To apply the AugLag tracking algorithm, we define a simulation horizon
t ∈ [t0, tf ] which is divided into Ns points with states z(tk), k = 0, ..., Ns and ∆t = tk+1 − tk.
We set the augmented Lagrangean penalty parameter to ρ = 100. To solve the augmented
Lagrangean QP at each step, we fix the number of PSOR iterations to 25. To illustrate the
importance of handling non smoothness effects in a consistent manner, we compare the per-
formance AugLag with two continuation algorithms incorporating different smoothing barrier
functions. The first algorithm (Log Barrier) smooths out the inequality constraints by using
terms of the form µ · log(x−xmin)+µ · log(xmax −x), µ = 1.0 [17, 18]. The second algorithm
(Sqrt Barrier) incorporates terms of the form µ · sqrt(x− xmin) + µ · sqrt(xmax − x), µ = 100
[14, 6]. To prevent indefiniteness of the barrier functions near the boundaries of the feasible
region, we incorporate a fraction to the boundary rule of the form,

x = min(max(x, xmin + ǫ), xmax − ǫ), ǫ = 1 × 10−3.

We initialize the algorithms by perturbing an initial solution w∗
t0

as w̄t0 ← w∗
t0

· δw where
δw > 0 is a perturbation parameter. This perturbation generates the initial residual r(w̄t0 , t0)
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Fig. 6.1. Residual trajectories for Barrier and AugLag continuation algorithms with δw = 1.25.
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Fig. 6.2. Residual trajectories for AugLag with increasing ∆t.

. An additional perturbation, in the form of a set-point change, is introduced at tk = 50. The
residuals along the manifold r(w̄tk

, tk) are computed from (3.7). In our numerical experiments,
all the algorithms are able to tolerate relatively large initial perturbations, maintaining the
residuals stable along the entire time horizon. Log Barrier destabilizes at δw = 1.20 while
Sqrt Barrier destabilizes at δw = 1.25. AugLag remains stable in both cases, tolerating
perturbations as large as δw = 5.0. In Figure 6.1, we present the norm of the residuals along
the simulation horizon with ∆t = 0.025 and for an initial perturbation of δw = 1.25. As can
be seen, even if the initial residual is large, O(102), AugLag remains stable. In addition, the
use of smoothing functions introduces numerical instability. We now illustrate the effect of
∆t on the residual of AugLag. Here, the initial residual is generated by using δw = 5.0 and
can go as high as O(103). In Figure 6.2, note that the residual levels remain stable, implying
that δr is at least O(103). The set-point change generates a residual that is only O(100) and
can be tolerated with no problems. The PSOR residuals rǫ at the beginning of the horizon
and at tk = 50 are O(10−1) and go down to O(10−6) when the system reaches the set-points.
In Figure 6.3, we present control and temperature profiles for ∆t = 0.25 and ∆t = 0.01. As
expected, the tracking error decreases with the step size. We note that the PSOR strategy
does a good job at identifying the active-set changes in subsequent steps. At a single step,
up to 100 changes were observed. For the larger step size, note that even if the active-sets do
not match, the residuals remain bounded and the system eventually converges to the optimal
trajectories.

7. Conclusions and Future Work. We have presented a framework for the analysis of
parametric nonlinear programming (NLP) problems based on generalized equation concepts.
The framework allows us to derive approximate algorithms for on-line NLP. We demonstrate
that if points along a solution manifold are consistently strongly regular, it is possible to
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Fig. 6.3. AugLag and optimal trajectories for the control (top) and temperature (bottom).

track the manifold approximately by solving a single linear complementarity problem (LCP)
per time step. We established sufficient conditions that guarantee that the tracking error
remains bounded to second order with the size of the time step, even if the LCP is solved
only to first-order accuracy. We present a tracking algorithm based on an augmented La-
grangean reformulation and a projected successive overrelaxation strategy to solve the LCPs.
We demonstrate that the algorithm is able to identify multiple active-set changes and reduce
the tracking errors efficiently. As part of our future work, we will establish a more rigorous
comparison between the stability properties of the augmented Lagrangean penalization and of
smoothing approaches. In addition, we will study the possibility of proving convergence, with-
out requiring the augmented Lagrangean penalty parameter to go to ∞. We will establish
a more efficient implementation of the algorithm and will perform a detailed computational
analysis. This strategy has the potential to solve large-scale NLPs in real-time environments.
In addition, we are interested in exploring a strategy able to adapt the number of PSOR iter-
ations (and thus the step size) along the manifold. Such a strategy could reduce the tracking
errors and improve the robustness of the algorithm.
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